【案件相談は無料】統計学/機械学習を用いたデータ分析を行い、分析結果を納品します
業務内容
▼お勧めしたい事業者様
・自社商品の販売動向を可視化したい事業者様。
・顧客行動の傾向分析・将来予測を行いたい事業者様。
・価格予想モデルを作成したい事業者様。
・施策の実施効果の検証を行いたい事業者様。
▼ご提供内容
・提供いただいた社内データを分析し、統計学的な見地から分析結果をまとめ、『分析結果レポート』のPDFを納品します。分析結果には、当方の分析結果を踏まえた意見を記載します。
・<スタンダード>または<プレミアム>の場合は、『分析モデル(分析に用いたPythonコード)』を納品します。
▼お取引の流れ
①案件相談(案件相談は無料):ワークスペースを使ったWebミーティングで、依頼内容や分析データの確認をさせていただきます。この段階ではデータ分析によるアウトプットが明確でなくてもOK。お話を聞かせていだだく中で、事業者様の課題の内容や解決の方向性を擦り合わせさせて頂きます。データ分析によるアウトプットが難しいようであればここで終了となりますが、方向性がまとまった場合は、納期・予算の相談をさせていただきます。
なお、案件相談のみで終了するケースはよくありますので、お気軽にお声掛けください。
②分析に必要な社内データをランサーズのメッセージ機能を通じて送っていただき、当方でデータ分析を行います。社内データに個人を特定できる情報が記載されている場合、原則として、マスキング処理の後、データを送付していただきます。
③分析結果をまとめ、分析結果を踏まえた意見を付して、『分析結果レポート』のPDFを事業者様へ送付します。
④『分析結果レポート』の内容を確認いただき、質問等に回答をいたします。解説の記述追加等の修正依頼については2〜4回までお受けいたします。内容説明のWebミーティング開催も可能です。レポートの内容を確認いただき、事業者様にとってビジネス上の付加価値がないとご判断された場合は、当初見積額の50%まで報酬を減額させて頂きます。
⑤<スタンダード>または<プレミアム>の場合は、『分析モデル(分析に用いたPythonコード)』を納品します。<プレミアム>の場合はモデルの解説書も納品いたします。納品後、質問への回答、概要書の修正、内容説明のWebミーティング等は納品後、2週間の間、対応可能な範囲でお受けいたします。継続的なフォローが必要な場合は別料金となりますが、対応可能です。
▼データ分析の例
・売上予測
・顧客行動分析
・延滞予測
・不動産価格の予測
・観客来場者数の要因分析
▼対応可能な分析手法
・回帰分析
・判別分析
・主成分分析
・クラスタリング
・時系列分析
・RAG構築
▼料金プランやオプション
<ベーシック>
データを分析し、『分析結果レポート』を納品します。
<スタンダード>
データを分析し、『分析結果レポート』を提出後、『分析モデル(Pythonコード)』を、希望により2種類まで納品します。
<プレミアム>
データを分析し、『分析結果レポート』を提出後、『分析モデル(Pythonコード)』を、希望により2種類まで納品し、モデルの解説書も納品します。
※AIライブラリの詳細な数式等については対応致しかねます。
☆オプション☆
・その他、データ分析関連のお仕事を時間単価5,000円で相談に応じます。
▼納期
・原則として、『分析結果レポート』はデータ受領から2週間以内に納品します。
※データの前処理等の要否によって2週間よりも長い納期が必要となる場合がございます。
・原則として、『分析モデル』は、1種類の場合は『分析結果レポート』の納品から7日後、2種類の場合は16日後に納品します。
ご依頼によりデータ分析やモデル構築、可視化を請け負います
業務内容
お取引後の流れ
- 無料相談(オンライン会議)
- 要件定義(チャット相談)
- ローデータ確認(チャット相談)
- 成果物納品(共有方法をご教示ください。)
- 問い合わせ対応 (チャット相談)
成果物
- 報告書(PowerPoint/Looker Studio等)
- ソースコード(前処理から探索的データ分析、予測モデル構築、効果検証まで)
- 証拠資料(出所やグラフ等)
キーワード
- 回帰問題
- 分類問題
- レコメンド
- 画像認識
- 音響解析
- 効果検証
【データサイエンス】丁寧で戦略的なデータ分析、可視化&問題解決提案を行います
業務内容
業務内容:
コミュニケーションを大切に、データ活用に課題を抱える企業や組織に対して、戦略的なデータ分析と可視化、そして問題解決提案を提供します。
具体的な業務内容:
- データクリーニング: データを頂き、分析に適した形に整理します。
- 探索的データ分析(EDA): Pythonを用いて、データの特徴や傾向を把握し、洞察を導き出します。
- 高度な統計分析: 機械学習モデルの構築や統計的検定を行い、データに基づく予測や意思決定をサポートします。
- データ可視化: Power BIやTableauを使用し、複雑なデータを直感的に理解できるダッシュボードを作成します。
- ビジネス課題解決提案: 分析結果を基に、具体的な改善策や戦略を提案します。
- レポート作成とプレゼンテーション: 分析結果を分かりやすくまとめ、経営陣や関係者に効果的に伝えます。
私の強み:
- 金融・都市計画・業務改善分野での実務経験を活かした、ビジネス視点でのデータ解釈
- 最大8プロジェクトの並行管理経験による効率的な業務遂行
- データサイエンティスト資格保有による最新の分析手法の適用
- 英語でのコミュニケーション能力を活かした、グローバルな視点での分析
納品物例:
- データ分析レポート(PDF)
- インタラクティブなダッシュボード(Power BIファイル)
- 予測モデル(Pythonスクリプト)
- 戦略提案書(PowerPointプレゼンテーション)
丁寧かつ迅速な対応で、お客様のデータ活用を強力にサポートいたします。
【即日対応】機械学習エンジニアが機械学習によるモデル開発・予測・可視化を行います
業務内容
<サービス紹介>
下記のお悩みを解決します
●データの集計は済んでいるのにいまいちよく分からない。
●大量のデータを迅速に処理したい
●データを整理したい
<サービスの特徴>
●迅速、かつ安価で対応します
<サービスの流れ>
step1 依頼内容のご確認
step2 データ内容と要望のヒアリング
step3 可視化の結果の報告とフィードバック
step4 必要に応じた追加サポート
常に新しい技術を習得し、クライアントのニーズに応えるためのデータ分析を行っております。どうぞお気軽にご相談ください。
【お急ぎの方もOK】自然言語・時系列・テーブルデータの分析を行います
業務内容
業務内容
▼こんな方にオススメ
製品開発や品質改善、実験や操業データの解釈で困っていませんか?データから特長量を評価することで、次のステップへ進むためのアクションが見えてきます。お気軽にお問い合わせください。データの守秘義務と漏洩防止には万全を期しています。
▼ご提供内容
ディープラーニングを用いて、提供されたデータから特長量を評価します。最適な手法を選定し、未来予測も可能なモデルを構築します。お気軽にお問い合わせください。
▼ご購入後の流れ
ご注文前にご依頼内容をお知らせください。内容を精査し、アウトプットのイメージを提示します。それがご期待に沿うものであれば、ご注文ください。ご注文後にデータを解析し、一次回答を行います。必要に応じて追加や修正対応をさせていただきます。
▼納期
- プランに応じて
まずはお気軽にお問い合わせください。
各種データマイニング手法の効果的な適用により、高度なデータ分析を行います
業務内容
すでにあるデータに何となく適当な分析手法を適用して出てきた最もらしい分析結果に適当な解釈をしても、いくらAIが発達しようとも高度なデータ分析を行うことができません。
効果的なデータ分析を行うためには、何が知りたいのか目的をはっきりさせ、そのためには
どのようなデータが必要なのか、そして現実的に得られたデータをどのように加工すれば
高度なデータ分析が可能になるかをまずはコンサルティングします。そのうえで各種データマイニング手法、多変量解析手法を適用し、高度な分析結果を提供いたします。
- 業務
- コンサルティング
- 手法
- ニューラルネットワーク 決定木分析 クラスターコンピューティング 線形回帰 ベイズ統計 分類モデル
- テクノロジー
- Python R Jupyter Notebook
現役データアナリストがExcel・csvデータの前処理・クレンジングをします
業務内容
【顧客データがもっと見やすくなれば、売り上げ予測できるかもしれないのに…】
あなたのお仕事において、欠損値や半角/全角スペース、日付の表記法などが入力者によってバラバラで、分析に使えそうにないと判断されているようなデータはありませんか?
使えないと一蹴して削除する前に、そのデータ、私に綺麗にさせてくれませんか?
機械学習全盛のこの時代、Excelやcsvのデータは顧客の購買予測などに応用できる、いわば宝の山です。そのデータがもし見やすく、またPCによる分析のしやすい形となれば、未開拓の商機を見いだすことができるかもしれません!
私は東大で心理学を専攻し、実験データの扱いや統計解析手法に慣れ親しみました。さらに旧帝大医学部に再入学し、独学でデータ分析手法を学ぶほか、機械学習を医学研究に応用する研究室での研究従事、さらには統計検定準1級を最優秀成績賞で取得しました。
実務ではデータ分析企業でのインターンにて自動車部品の性能データ分析、さらに大学医学部での医学研究データ分析を経験。貢献が認められ医学部論文への氏名掲載に至りました。
経験例:
データクレンジング、分散分析、相関係数の算出、ロジスティック回帰分析、重回帰分析、t検定、カイ二乗検定、赤池情報量基準の算出、scikit-learn ならびにxgboostによる機械学習モデル、ノンパラメトリック検定など
ご購入前にDMにて簡単に依頼内容をご相談ください。差し支えなければデータをお送りいただけますと幸いです。
ぜひ私におまかせください!
- 業務
- 人工知能・機械学習
- 手法
- 機械学習 教師あり学習 決定木分析 線形回帰
- テクノロジー
- Python R Scikit Learn Jupyter Notebook
現役データアナリストが、データ分析・機械学習をお手伝い/代行します
業務内容
概要
お手持ちのデータを解析して、どんなことがわかるか・何をすべきか等、次のアクションに繋がる結果をお返しします。
お取引の流れ
①見積り依頼(ざっくりとご希望をお知らせ下さい)
※ビデオチャット可能です!
②弊方からのご提案(価格、納期、解析のゴールをご提示します)
③こ依頼(上記②でご了承の場合)
サービス価格
仮価格で5,000円としています。
ご依頼内容によっては上下しますが、できるだけお手頃な価格を目指しますのでご予算とあわせて、まずはご相談ください。
手法
pythonとしていますが、excelだけでの分析もご依頼によっては可能です。
また、解析結果をPowerPoint資料にまとめることも可能です。
データ分析 東大AI&データサイエンスサークルの力で 売上upコスト削減し ます
業務内容
データ分析を全て請け負います。
顧客データ、売り上げデータ、社内リソースをただエクセルファイルに入れて塩漬けにしていませんか?
私たちは東京大学のAI研究室のメンバーを多数抱えており、データサイエンスサークルの代表とも繋がっております。
優秀なデータサイエンティストが皆様のデータを分析し、コンサルティングします。
これにより売り上げ向上、社内DX、コスト削減に繋げることができます。
具体例:大手スーパー様の場合
売れた商品と時間のデータから特徴量をみつけ、特売のタイミングと%を試算。
これにより効率的なマーケティングが行え、コスト削減、売り上げアップに繋がった。
python等を使用したデータ加工、分析、機械学習の結果からビジネス戦略を計画します
業務内容
fd
- 業務
- 人工知能・機械学習
- 手法
- 機械学習 教師あり学習 教師なし学習 決定木分析
- テクノロジー
- Python Scikit Learn Jupyter Notebook SQL